
Digging Into IDAPI Part 3
by John O’Connell

Last month I promised we’d
have a look at table and record

locking, as well as in-memory
tables and their uses. We’ll also
continue developing the TjocTable
component and a few more compo-
nents which give us some useful
information about BDE objects.

Lock Me Up
Before You Go-Go...
Table and record locks are pretty
much left out in the cold as far as
Delphi’s documentation is con-
cerned. The exclusive table lock
does get a mention as implemented
in the TTable.Exclusive property.
In the VCL source you’ll find the
undocumented TTable methods
LockTable, which applies a read
lock or a write lock to a table, and
UnlockTable, which releases a read
or write lock. We encountered
these methods last month.

Let’s compare the types of table
locks we know about so far. The
exclusive table lock prevents any
other users from opening the table:
obviously it’s impossible to apply
an exclusive lock to a table already
opened by another session. Cases
where an exclusive lock is neces-
sary are when a table is being re-
structured, packed and renamed,
in which case the most restrictive
type of table lock is required.

A read lock prevents all other
users modifying the table. This is
more commonly known as a “re-
peatable read” which can be
placed on a table by any number of
users. A write lock prevents all
other users except the lock owner
from modifying the table: only one
user at a time can place a write lock
on a table which cannot have been
read locked any other users. How-
ever, where allowed, a user can
place a read lock on a table and
then place a write lock without
needing to release the read lock:
when the write lock is released the
read lock will still be in effect. Table
1 summarises the relationship
between the various lock types.

We can see that the table read
lock is the least restrictive and the
exclusive lock is the most restric-
tive. Record locks aren’t even half
as varied as table locks (a record is
either write locked or not locked at
all), there is no such thing as a read
record lock for local tables. Fur-
ther, if any of these table locks are
in effect no record in the table can
be locked. So how are record locks
implemented in Delphi? When a
dataset’s state switches to dsEdit
the current record is locked.
There’s no other way of locking a
record unless a BDE function is
used. Remember DbiGetRecord?
The function does a number of
things: it retrieves the current re-
cord, optionally locks that record
and optionally retrieves that
record’s properties. Here’s the
function prototype again:

function DbiGetRecord(
 { Cursor handle }
 hCursor : hDBICur;
 { Optional lock request }
 eLock : DBILockType;
 { Record buffer(client) }
 pRecBuff : Pointer;
 { Optional record properties}
 precProps : pRECProps
): DBIResult;

where DBILockType is defined as:

DBILockType = (dbiNOLOCK,
 dbiWRITELOCK, dbiREADLOCK);

Now those of you who are paying
attention will cry “I thought you

said there was no such thing as a
read record lock?” Well, I wasn’t
quite straight with you. A read
record lock is always promoted to
a write record lock (unless the ta-
ble driver says otherwise, which
for Paradox and dBase is currently
not the case). To lock the current
record in Table1 we use:

Table1.UpdateCursorPos;
Check(DbiGetRecord(
 Table1.Handle, dbiWriteLock,
 nil, nil));

The first statement synchronises
the record pointer, the second just
locks the record: we don’t want the
record data or properties. With
Delphi, Database Desktop and
Paradox, a record lock is released
when the record is posted or can-
celled, but a record locked using
DbiGetRecord stays locked until the
table is closed or the function
DbiReleaseRecordLock is called:

function DbiRelRecordLock(
 { Cursor handle }
 hCursor : hDBICur;
 { True for all locks }
 bAll : Bool
): DBIResult;

If the bAll parameter is True the
function will release all record
locks placed on the table identified
by hCursor by the current session.
If bAll is False only the current re-
cord is unlocked: this function fails
if the current record is not locked.
We can check if the current record

User A
applies:

User B applies:

Exclusive lock Read lock Write lock No table lock

Exclusive lock Fails Fails Fails Fails

Read lock Fails Succeeds1 Fails Succeeds

Write lock Fails Fails Fails Succeeds

No table lock Fails Succeeds Succeeds Succeeds
1Succeeds if Paradox table, fails if dBase table

➤ Table 1: Table locks interaction

November 1996 The Delphi Magazine 15

is locked by using:

function DbiIsRecordLocked(
 { Cursor handle }
 hCursor : hDBICur;
 { Lock status }
 var bLocked : Bool
): DBIResult;

The record’s lock status is re-
turned in bLocked. What about table
locks? How can we tell if a table is
locked? IDAPI provides:

function DbiIsTableLocked(
 { Cursor handle }
 hCursor : hDBICur;
 { Lock type to verify }
 epdxLock : DBILockType;
 { Num of locks of given type}
 var iLocks : Word
): DBIResult;

which returns the number of speci-
fied locks on the table (identified
by hCursor) in the iLocks parame-
ter. We can determine if a table is
shared by other users by calling:

function DbiIsTableShared(
 { Cursor handle }
 hCursor : hDBICur;
 { Shared status }
 var bShared : Bool
): DBIResult;

which will return False in bShared if
the table has an exclusive lock or is
not shared.

We can count the number of cur-
sors open on a table with a call to:

function DbiGetTableOpenCount(
 { Database }
 hDb : hDBIDb;
 { Table name }
 pszTableName : PChar;
 { Driver type }
 pszDriverType : PChar;
 { returned number of cursors}
 var iOpenCount : Word
): DBIResult;

where the number of cursors open
is returned in iOpenCount. If
pszTableName is passed with a file
extension or if hDb identifies an SQL
database, pszDriverType can be
passed as nil, otherwise either
szPARADOX or szDBASE must be
passed. This function can be used

before attempting to open a table
for exclusive use. Notice that a cur-
sor handle isn’t required so the
relevant table doesn’t have to be
open when we call this function.

All the IDAPI functions men-
tioned here so far have been imple-
mented in TjocTable (the full
source is included on this month’s
disk) as the CountTableLocks,
LockRecord and UnlockRecord meth-
ods and as the IsRecordLocked,
IsShared and OpenCount properties.

A useful locks-related function is
DbiSetLockRetry which allows you
to set a lock retry period for the
current session (important note
for Delphi 2.0 developers) during
which a failed lock is retried until
the retry period expires. The
prototype for this function is:

function DbiSetLockRetry(
 iWait: Integer): DBIResult;

If iWait is zero then no retry is
attempted, a negative iWait causes
infinite retries and a positive value
specifies the retry period in sec-
onds. Lock retries only occur if the
table is open; if the table is closed,
any failed attempt to open it exclu-
sively will not be retried. If you de-
cide to use lock retries bear in mind
that your application may run slug-
gishly if you set the retry period
too high where there’s a good
chance that a record to be edited
will be locked. A sensible maximum
figure is five seconds. After all, you
don’t want your application’s users
thinking that their system has
hung just because you’ve set an
excessive lock retry period.

We can retrieve all the informa-
tion we want about all types of
locks on a particular table using the
IDAPI function:

function DbiOpenLockList(
 { Cursor handle }
 hCursor : hDBICur;
 { True, for all Users locks }
 bAllUsers : Bool;
 { True, for all lock types }
 bAllLockTypes : Bool;
 { Returned cursor on Lock list }
 var hLocks : hDBICur
): DBIResult;

which returns a cursor, in hLocks,
to an in-memory table named LOCKS
containing the required informa-
tion, where hCursor identifies the
table whose locks we’re interested
in, bAllUsers specifies whether we
want locks for all users/sessions or
the current session (again Delphi
2.0 developers take note) and
bAllLockTypes specifies whether
we want all types of locks or just
record locks.

In-Memory Of...
An in-memory table exists purely in
memory. There are a few other dif-
ferences between an in-memory ta-
ble and a standard table. Let’s
examine some of the more telling
cursor properties listed in Table 2.
The table type comes as no sur-
prise but the share mode does –
how can an in-memory table be
shared? The translation mode
xltRecord is new as we’ve only en-
countered translation types
xltNone and xltField. We’ll exam-
ine cursor translation modes a bit
later. The fact that the open mode
is read-only means that records
can’t be inserted or deleted. The
most important difference be-
tween in-memory and standard ta-
bles is that once closed, an
in-memory table no longer exists.

For the structure of the LOCKS
table we can refer to the lock

Property name Value

szTableType ’INMEMORY’

eOpenMode dbiReadOnly

bBookMarkStable True

eShareMode dbiOPENSHARED

iSeqNums 1 (uses sequence numbers)

exltMode xltRECORD

➤ Table 2: Notable in-memory cursor properties

16 The Delphi Magazine Issue 15

descriptor of type LOCKDesc as
defined in DBITYPES (see Listing 1).

The constant lckGROUPLOCK refers
to Paradox for DOS group locks.
lckIMGAREA refers to Paradox image
locks, which simply indicate that

Paradox or Database Desktop has
opened the table for view.
lckTABLEREG is a table open lock
which isn’t really a lock but indi-
cates that a cursor is open on the
table; by counting these locks you

could determine how many users
have the table open instead of us-
ing DbiGetTableOpenCount. The net
level session number refers to the
network session identifier, the
IDAPI session number refers to the
local session identifier and will be
zero for any locks not owned by the
current session. The iInfo field
doesn’t concern us.

How do we get at the information
in an in-memory table? Using IDAPI
functions of course! We retrieve
records using DbiGetNextRecord,
DbiGetRecord, DbiGetPriorRecord,
DbiSetToBegin and DbiSetToEnd. The
last two functions position the cur-
sor to the start and end of the table
respectively. The code in Listing 2
opens and navigates the LOCKS in-
memory table. The LOCKLIST.DPR
application on the disk lists the
contents of the LOCKS table in a grid.

There is a more convenient way
of getting at the contents of the
LOCKS in-memory table: we can use
a TDataset derived component to
encapsulate the LOCKS table, which
can then be used in the IDE just like
a TTable. The key to achieving this
is to override the CreateHandle
method of TDataset or any of its
descendants. This method, called
when the dataset is opened or its
Active property is set to True, sup-
plies the IDAPI cursor handle en-
capsulated by the dataset. We’ll
use TDataset as the basis for our
new component TTableLocks; see
the file INFOTAB.PAS on the disk
for the full source and Listing 3 for
the component definition.

You may be wondering why
TTableLocks publishes a DataSource
property rather than a Table or
DataSet property of type TTable.
The main reason is that the Data-
Source property can be assigned to
the DataSource property of
TTableLocks’ own private FDataLink
field which has events to handle
changes in the state of the data-
source and changes in the Active
property of the datasource’s
dataset. All of which means that
TTableLocks will know if the dataset
has been closed in which case
TTableLocks is closed. The publish-
ed DataSource property’s write
access method checks the dataset
to ensure it’s a TTable or a TTable

LOCKDesc = record
 iType : Word; { Lock type (0 for rec lock) }
 szUserName : DBIUSERNAME; { Lock owner }
 iNetSession : Word; { Net level Session number }
 iSession : Word; { Idapi session#, if our lock }
 iRecNum : Longint; { If a record lock }
 iInfo : Word; { Info for table locks }
end;

{ iType can take on one of the following values: }
lckRECLOCK = 0; { Normal Record lock (Write) }
lckRRECLOCK = 1; { Special Pdox Record lock (Read) }
lckGROUPLOCK = 2; { Pdox Group lock }
lckIMGAREA = 3; { Pdox Image area }
lckTABLEREG = 4; { Table registration/Open }
lckTABLEREAD = 5; { Table Read lock }
lckTABLEWRITE = 6; { Table Write lock }
lckTABLEEXCL = 7; { Table Exclusive lock }
lckUNKNOWN = 9; { Unknown lock }

➤ Listing 1

const
 LockStr: array[0..9] of string[30] =
 (’Record lock (write)’, ’Record lock (read)’,
 ’Paradox Group lock’, ’Paradox Image lock’,
 ’Table open lock’, ’Table read lock’,
 ’Table write lock’, ’Exclusive lock’,
 ’No such lock’, ’Unknown lock’);
var
 LckDesc: LOCKDesc;
 LckCur: HDbiCur;
 Msg: String;
 Table1: TTable;
 UserName: string;
begin
 Table1 := TTable.Create(Self); {need to set properties and open the table}
 ...
 Check(DbiOpenLockList(Table1.Handle, True, True, LckCur));
 Check(DbiSetToBegin(LckCur);
 while (DbiGetNextRecord(LckCur, dbiNOLOCK, @LckDesc, nil)=DBIERR_NONE) do
 with LckDesc do begin
 NativeToAnsi(Table1.Locale, szUserName, Username);
 Msg := LockStr[iType] + #10;
 Msg := Msg + Username + #10;
 Msg := Msg + IntToStr(iNetSession) + #10;
 Msg := Msg + IntToStr(iSession) + #10;
 Msg := Msg + IntToStr(iRecNum);
 if MessageDlg(Msg, mtConfirmation, mbOkCancel, 0) = mrCancel then
 break;
 end;
 Check(DbiCloseCursor(LckCur));
 ...
end;

➤ Listing 2: Opening and navigating the LOCKS in-memory table

TTableLocks = class(TDataset)
private
 FAllUsers: Boolean;
 FAllLockTypes: Boolean;
 FDataLink: TFieldDataLink;
 procedure SetDataSource(const Value: TDataSource);
 function GetDataSource: TDataSource;
 function CanOpenLockList: Boolean;
 procedure DoActiveChanged(Sender: TObject);
protected
 procedure Notification(
 AComponent: TComponent; Operation: TOperation); override;
public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 function CreateHandle: HDbiCur; override;
published
 property DataSource: TDataSource read GetDataSource write SetDataSource;
 property AllUsers: boolean read FAllUsers write FAllUsers default True;
 property AllLockTypes: boolean
 read FAllLockTypes write FAllLockTypes default True;
end;

➤ Listing 3: TTableLocks definition

18 The Delphi Magazine Issue 15

descendant and the AllUsers and
AllLockTypes properties are simply
used as parameters to DbiOpenLock-
List. The LOCKLIST.DPR demo
application on the disk also makes
use of a TTableLocks component.
We’ve already encountered the
Notification method in the
previously presented DBRecLabel
component.

There is one drawback to using
TTableLocks. Have you played with
the LOCKLIST.DPR demo and spot-
ted it? The record number field is
missing; in fact it’s been ignored by
our new component. To explain
why we’ll need to delve a little into
the topic of data translation be-
tween IDAPI logical field types and
the physical field types supported
by the different table drivers.

Each table type stores field types
in different formats. A Paradox ta-
ble stores a floating point value dif-
ferently to a dBase or Interbase
table. Without data translation an
application would have to know
the native internal storage format
of each field type for the table in
question. Field translation gets
around this problem. When a field
is retrieved from the table it gets
converted from the native format
to an IDAPI logical format; when a
field is written back to the table it
is converted from the logical for-
mat back to the native format.
Table 3 lists the IDAPI field types.

A cursor or table’s exltMode
property specifies the translation
mode for that table. xltFIELD speci-
fies that field values are translated
between the table’s native or
physical field types and IDAPI or
logical field types. xltNONE specifies
no translation and so the applica-
tion is responsible for handling the
table’s physical field types. The
translate mode of the LOCKS
in-memory table is xltRECORD which
is in effect similar to xltNONE in that
no data translation occurs. Our
problem occurs because Delphi’s
TDataSet doesn’t expect to have to
deal with the physical field types
presented to it in its InternalOpen
method, which in turn calls TField-
Defs.AddFieldDesc where LOCKS’
record number field is treated as
having an unknown type and isn’t
added to TDataset.FieldDefs.

There is no simple workaround for
this problem caused by fields of
type unsigned 32-bit integer being
unrecognised.

But that shouldn’t cause us too
much of a problem, thanks to the
TLocksList object (not a compo-
nent) which I’ve implemented in
the LOCKINFO unit which you’ll find
on the disk. Listing 4 shows the
object definition. This useful utility
can be used to check for the

presence of a user-specified match-
ing table or record lock defined by
the values in each field of the LOCKS
in-memory table.

To use a TLocksList object you
first need to create an instance of
it. Each instance can be associated
with a particular TTable by assign-
ment to the instance’s Table
property. Here are the steps:
➣ Assign the active TTable to the

Table property.

IDAPI type Description

fldZSTRING Zero terminated array of chars

fldDATE Date

fldBLOB Binary Large Object

fldBOOL 16-bit signed integer

fldINT16 16-bit signed integer

fldINT32 32-bit signed integer

fldFLOAT 64-bit floating point

fldBCD Binary coded decimal

fldBYTES Fixed-length byte array

fldTIME Time

fldTIMESTAMP Timestamp (contains time and date)

fldUINT16 16-bit unsigned integer

fldUINT32 32-bit unsigned integer

fldFLOATIEEE 80-bit floating point

fldVARBYTES Length prefixed byte array

➤ Table 3: IDAPI logical types

TLockInfoType = (liLockType, liUsername, liNetSess, liLocalSess, liRecNo);
TLookFor = set of TLockInfoType;
TLockType = (lkRecordWrite, lkRecordRead, lkPdoxGroup, lkPdoxImage, lkOpen,
 lkRead, lkWrite, lkExcl, lkError, lkUnknown, lkIgnore);
TUserName = string[DBIMAXUSERNAMELEN];
property Table: TTable;
property LockType: TLockType;
property UserName: TUserName;
property NetSession: Word;
property LocalSession: Word;
property RecNo: LongInt;
procedure SetParams(const LType: TLockType; const LUser: TUserName;
 const LNetSess, LOurSess: Word; const LRecNo: LongInt);
function FindFirst(var LockInfo: LOCKDesc): Boolean;
function FindNext(var LockInfo: LOCKDesc): Boolean;

➤ Listing 4: TLocksList types, properties and methods

function DbiAnsiToNative(
 LdObj : Pointer; { Language driver }
 pNativeStr : PChar; { Destination buffer (opt) }
 pAnsiStr : PChar; { Source buffer }
 iLen : Word; { Length of buffer (opt) }
 var bDataLoss : Bool { Returns TRUE if conversion will lose data (opt) }
): DBIResult;

function DbiNativeToAnsi(
 LdObj : Pointer; { Language driver }
 pAnsiStr : PChar; { Destination buffer (opt) }
 pNativeStr : PChar; { Source buffer }
 iLen : Word; { Length of buffer (opt) }
 var bDataLoss : Bool { Returns TRUE if conversion will lose data (opt) }
): DBIResult;

➤ Listing 5

November 1996 The Delphi Magazine 19

➣ Set the search options to iden-
tify which fields in the LOCKS ta-
ble will be used to locate a lock:
these are set by assignment to
the LookFor property.

➣ Set the locks search parameters
by assignment to the LockType,
Username, NetSession, LocalSes-
sion and RecNo properties. Alter-
natively use the SetParams
method passing dummy values
for any parameter excluded
from the search parameters.

You’re now ready to start locating
matching locks. The first method
you must call after setting search
parameters is FindFirst which
searches for a matching lock start-
ing from the top of the LOCKS table.
If a lock is found then FindFirst
returns True and assigns the lock
descriptor to the LockInfo parame-
ter. You can then repeatedly call
FindNext until it returns False in
which case LockInfo contains an
invalid lock descriptor. Don’t try to
call FindNext before calling Find-
First otherwise you’ll raise an
Invalid method call: FindNext ex-
ception. And don’t forget to free
the instance when you’ve finished
with it.

The LOCKINFO unit also imple-
ments a function, GetLockUser, to
return the username owning a lock
on a particular record (useful be-
fore attempting to edit a record
which may be locked):

function GetLockUser(
 ATable: TTable;
 RecNum: LongInt): TUserName;

If the record isn’t locked then a
blank string is returned. The demo
application LOCKLIST.DPR on the
disk (Figure 1) demonstrates the
use of TLocksList and GetLockUser.

Mind Your Language
Whenever we call an IDAPI function
that takes string arguments we
must ensure that the string’s char-
acter set (usually ANSI) matches
that of the language driver for the
IDAPI object involved in the func-
tion call. The two functions DbiAn-
siToNative and DbiNativeToAnsi
translate strings from ANSI to the
language driver’s native character
set and vice-versa. The function
prototypes are shown in Listing 5.

Fortunately Borland have pro-
vided the following function and
procedure (which use the afore-
mentioned functions) to simplify
translation between ANSI and na-
tive language driver character sets:

function AnsiToNative(
 Locale: TLocale;
 const AnsiStr: string;
 NativeStr: PChar;
 MaxLen: Word): PChar;
procedure NativeToAnsi(
 Locale: TLocale;
 NativeStr: PChar;
 var AnsiStr: string);

Both are defined in the DB unit and
provide the convenience of using
Pascal strings to specify the ANSI
string translated to or from the na-
tive character set. If you don’t use
ANSI to native translation you’ll en-
counter problems with string argu-
ments which contain lower case or
non-alphabetic characters passed
to an IDAPI function call. Likewise,
un-translated native strings re-
turned by an IDAPI function call
may contain garbage characters.
You’ve been warned!

The TLocale parameter used in
AnsiToNative and NativeToAnsi is a
pointer to the IDAPI language
driver object associated with a

BDE session, database and cur-
sor/table. This language driver ob-
ject is used in the translation
between ANSI and native character
sets and is destroyed when the as-
sociated IDAPI object is destroyed.
This is important because you’ll
need to decide which TLocale to
use when calling any of the above
translation functions. If the IDAPI
method called relates to an open
TTable then use TTable.Locale, but
if the table is closed then use
TTable.DBLocale which corre-
sponds to the database’s language
driver. If no database or table is
open then use Session.Locale.
Passing nil to a function requiring
a TLocale causes the default System
language driver (settable from
the System page of the IDAPI
Configuration Utility) to be used.

The DbiOpen... Functions
If you have been perusing the IDAPI
User’s Guide or on-line function
reference you may have noticed a
number of DbiOpen... functions
such as DbiOpenUserList or
DbiOpenIndexList (to name a few)
which create in-memory tables
containing information about some
IDAPI object. For instance,
DbiOpenTableList creates an in-
memory table with information
about all tables associated with a
particular database. The cursor to
the table is returned in the hCur
parameter for these functions
whose names, record descriptor
and purpose are listed in Table 4.
I’ve encapsulated most of these
functions as the components
TIdapiCfg, TTabInfo, TTableLocks
and TDbUserList as listed in the
Component column of Table 4.

The information contained in the
in-memory tables created by some
of these functions is very useful
indeed. We’ve already covered
DbiOpenLocksList but take DbiOpen-
TableTypesList which returns de-
tailed table type capability
information, such as maximum re-
cord size, number of field types
and the maximum number of fields
in a table, for each table type sup-
ported by a particular table driver;
the TABLECAP.DPR application
(Figure 2) uses this function. The
functions DbiOpenFieldTypesList

➤ Figure 1: The LOCKLIST demo application

20 The Delphi Magazine Issue 15

IDAPI Function Descriptor Purpose Component

function DbiOpenCfgInfoList(hCfg : hDBICfg;
 eOpenMode : DBIOpenMode; eConfigMode :
 CFGMode; pszCfgPath : PChar; var hCur :
 hDBICur): DBIResult;

CFGDesc Creates a table listing all the nodes in
the IDAPI Configuration file accessed by
pszCfgPath

function DbiOpenDatabaseList(
 var hCur : hDBICur): DBIResult;

DBDesc Creates a table listing all accessible databases
found in IDAPI.CFG

TIdapiCfg

function DbiOpenDriverList(
 var hCur : hDBICur): DBIResult;

No descriptor: just
DRIVERNAME field

Creates a table listing drivers available to the
IDAPI client

TIdapiCfg

function DbiOpenFamilyList(hDb : hDBIDb;
 pszTableName : PChar; pszDriverType : PChar;
 var hFmlCur : hDBICur): DBIResult;

FMLDesc Creates a table listing family members
(.MB .PX .VAL files etc) for a specified table

TTableInfo

function DbiOpenFieldList(hDb : hDBIDb;
 pszTableName : PChar; pszDriverType : PChar;
 bPhyTypes : Bool; var hCur : hDBICur): DBIResult;

FLDDesc Creates a table listing detailed field info
for a specified table; bPhyTypes specifies
whether logical or physical field types are
returned

TTableInfo

function DbiOpenFieldTypesList(pszDriverType :
 PChar; pszTblType : PChar; var hCur : hDBICur):
 DBIResult;

FLDDesc Creates a table listing field types supported
by a specified table driver

TIdapiCfg

function DbiOpenFileList(hDb : hDBIDb; pszWild :
 PChar; var hCur : hDBICur;): DBIResult;

FILEDesc Creates a table listing detailed info about all
files in hDb matching pszWild

function DbiOpenIndexList(hDb : hDBIDb;
 pszTableName : PChar; pszDriverType : PChar;
 var hCur : hDBICur): DBIResult;

IDXDesc Creates a table listing detailed index info for
a specified table

TTableInfo

function DbiOpenIndexTypesList(pszDriverType :
 PChar; var hCur : hDBICur): DBIResult;

IDXType Creates a table listing index types supported
by a specified table driver

TIdapiCfg

function DbiOpenLdList(var hCur : hDBICur):
 DBIResult;

LDDesc Creates a table listing available language
drivers

TIdapiCfg

function DbiOpenLockList(hCursor : hDBICur;
 bAllUsers : Bool; bAllLockTypes : Bool;
 var hLocks : hDBICur): DBIResult;

LOCKDesc Creates a table listing locks on the table
specified by hCursor; this table can include
just record locks or all locks for all users or
just the current user

TTableLocks

function DbiOpenRintList(hDb : hDBIDb;
 pszTableName : PChar; pszDriverType : PChar;
 var hChkCur : hDBICur): DBIResult;

RINTDesc Creates a table listing referential integrity
links for a specified Paradox table

TTableInfo

function DbiOpenSecurityList(hDb : hDBIDb;
 pszTableName : PChar; pszDriverType : PChar;
 var hSecCur : hDBICur): DBIResult;

SECDesc Creates a table listing record-level security
details for a specified table

function DbiOpenSPList(hDb : hDBIDb;
 bExtended : Bool; bSystem : Bool; pszQual :
 PChar; var hCur : hDBICur): DBIResult;

SPDesc Creates a table listing information about the
stored procedures (may include system
procedures) associated with database hDb

function DbiOpenSPParamList(hDb : hDBIDb;
 pszSPName: PChar; bPhyTypes: Bool; uOverload:
 Word; var hCur : hDBICur): DBIResult;

SPParamDesc Creates a table listing the parameters
associated with a specified stored procedure,
pszSPName

function DbiOpenTableList(hDb : hDBIDb;
 bExtended : Bool; bSystem : Bool;
 pszWild : PChar; var hCur : hDBICur): DBIResult;

TBLFullDesc which
is the combination
of TBLBaseDesc
and TBLExtDesc if
bExtended = True

Creates a table listing detailed info about all
tables in hDb matching pszWild: bSystem
includes SQL system tables; bExtended
returns extended table info

TTableInfo

function DbiOpenTableTypesList(pszDriverType :
 PChar; var hCur : hDBICur): DBIResult;

TBLType Creates a table listing table type names for
the specified table driver

TIdapiCfg

function DbiOpenUserList(var hUsers : hDBICur):
 DBIResult;

UserDesc Creates a table listing all current IDAPI users TDBUserList

function DbiOpenVchkList(hDb : hDBIDb;
 pszTableName : PChar; pszDriverType : PChar;
 var hChkCur : hDBICur): DBIResult;

VCHKDesc Creates a table listing Paradox table validity
checks or a table listing required fields for
an SQL table

TTableInfo

Note: Where a function uses parameters szTableName and szDriverType, the latter can be omitted if szTableName
includes a file extension

➤ Table 4: Useful DbiOpen... functions

November 1996 The Delphi Magazine 21

and DbiOpenIndexTypes list are also
very useful for determining field
type and index type capabilities for
a particular table driver. Whilst
these IDAPI functions are without
doubt very useful for telling you
what the BDE can do or what a
particular table’s properties are,
most of the information contained
in these information tables is avail-
able via Delphi’s data access
components. For instance, the
information obtained at run time
using DbiOpenFieldList is more eas-
ily obtained from the TTable Field-
Defs property; it’s easier to call
Session.GetAliasNames rather than
call DbiOpenDatabaseList and Ses-
sion.GetTableNames instead of Dbi-
OpenTableList.

My point is, don’t get carried
away using calls to IDAPI where a
VCL property or method will
achieve the same end.

I won’t go into the details of how
the TIdapiInfo, TTableInfo and
TDBUserList components work:
they’re pretty similar to the
TTableLocks component in that the
CreateHandle method is overridden
to initialise the dataset’s Handle
property. See for yourself in the
component’s source and play
around with them in the IDE. The
components just discussed are
useful encapsulations of most of
the DbiOpen... functions listed in
Table 4, but what about those func-
tions not encapsulated as a compo-
nent? That’s where TGenTable
comes in handy. It is a TDataSet
descendant whose CreateHandle
method and FHandle property are
overridden so that it’s Handle
property is declared public and
read/write. This means that a valid
IDAPI cursor handle can be as-
signed to Handle before opening or
activating the dataset. It also
means you can assign any old
pointer to Handle and potentially
wreak havoc! Unlike TIdapiInfo etc,
you can’t use TGenTable interac-
tively within the IDE because you
can only assign to the Handle prop-
erty at run-time, but using TGenT-
able instead of one of the other
in-memory table components does
give more flexibility. Listing 6
shows how to use TGenTable with a
call to DbiOpenSecurityList.

Be aware that you must always
obtain a valid cursor handle (ie
from an active dataset) to assign to
the Handle property before opening
the TGenTable. If the table is closed
the Handle property becomes inva-
lid because the associated cursor
will have been closed and the
cursor freed.

We know we can use TGenTable
with any IDAPI function which
returns a valid cursor, such as
DbiCreateInMemTable, which cre-
ates a temporary in-memory table
(Listing 7).

The INMEMTAB.DPR demo ap-
plication on the disk demonstrates
the use of this function with a
TGenTable component. Unlike the
in-memory tables previously en-
countered, the eOpenMode property
is dbiREADWRITE. Strange, then, that
records in a table created using
DbiCreateInMemTable can only be
added or edited but not deleted.
This limits the usefulness of in-
memory tables somewhat and re-
ally makes them just a glorified
expandable array of records. Let’s
build an in-memory table.

Like most tables, the main re-
quirements of an in-memory table
are a database, a table name and a
bunch of fields. The fields are

➤ Figure 2: The TABLECAP application

simply an array of IDAPI field
descriptors, as defined in Listing 8.

Despite the number of fields in
this record we need only specify
the first six (after initialising the
record to nulls) in order to create
a valid field descriptor. The short
procedure in Listing 9 creates an
in-memory table with two fields
and assigns the cursor to the table
to an instance of TGenTable.

Be aware that in-memory tables
support only IDAPI logical field
types. Instead of going through the
tedium of defining the field descrip-
tors for the in-memory table we can
use the field descriptors of another
table, borrowing its structure.
DbiGetFieldDescs achieves this:

function DbiGetFieldDescs(
 { Cursor handle }
 hCursor : hDBICur;
 { Array of field descriptors}
 pfldDesc : pFLDDesc
): DBIResult;

The TInMemTable component does
just this via its BorrowFrom property
which references an open TTable or
TQuery instance. Listing 10 shows
TInMemTable’s CreateHandle method
which illustrates how to use
DbiGetFieldDescs.

procedure TForm1.DoItClick(Sender: TObject);
var Cur: hDBICur;
begin
 Check(DbiOpenSecurityList(Database1.Handle, ’CUSTOMER.DB’, nil, Cur));
 MemTable1.Handle := Cur;
 MemTable1.Open;
end;

➤ Listing 6: Using TGenTable

function DbiCreateInMemTable(
 hDb : hDBIDb; { Database handle }
 pszName : PChar; { Logical Name }
 iFields : Word; { No of fields }
 pfldDesc : pFLDDesc; { Array of field descriptors }
 var hCursor : hDBICur { Returned cursor handle }
): DBIResult;

➤ Listing 7

22 The Delphi Magazine Issue 15

The reason for the call to Check-
IsBorrowFromActive is to avoid
passing a dud cursor handle to
DbiGetCursorProps or DbiGetField-
Descs. Once the TInMemoryTable
instance is opened you can add as
many records as you like, but you
can’t delete any.

Temporary Tables
Continuing on from in-memory ta-
bles, IDAPI provides temporary
tables which differ in that they can
be committed to disk and made
permanent. They also support in-
dexes and can be fully modified,
which is much more useful to us.
The function DbiCreateTempTable
creates such a table:

function DbiCreateTempTable(
 { Database handle }
 hDb : hDBIDb;
 { Table description }
 var crTblDsc : CRTblDesc;
 { Returned cursor on table }
 var hCursor : hDBICur
): DBIResult;

In common with DbiDoRestructure,
this function takes a table descrip-
tor (CRTblDesc) which we briefly ex-
amined last month. Let’s look at it
in more detail (see Listing 11).

The table descriptor record is
little more than a collection of vari-
ous descriptors and their counts.
Note that temporary tables don’t
support referential integrity (for
obvious reasons!) but passwords
(for Paradox-type temporary ta-
bles) are supported. The driver
type can be any of the standard
table types.

As with in-memory tables I’ve
created the TTempTable (a sub-
classed TTable) component to en-
capsulate the cursor returned by
DbiCreateTempTable. Like TInMemTab
it borrows an active TTable or
TQuery’s structure via the Borrow-
From property. A TTable’s indexes
can be borrowed provided that
TTempTable.BorrowIndexes is set. In
contrast to in-memory tables, the
field descriptors are passed within
the table descriptor which also in-
cludes index descriptors, but out
of all the fields in CRTblDesc only a
handful are required for a call to
DbiCreateTempTable, as shown in

the code snippet from TTemp-
Table.CreateHandle in Listing 12.

Notice the last line of code to
change the translate mode to
xltFIELD. This is necessary be-
cause temporary tables use physi-
cal field types by default whereas
the database VCL supports only
logical field types.

There are a few gotchas when
using TTempTable. I mentioned that
temporary tables support indexes;
to make use of this in TTempTable its
TableName property (which is other-
wise irrelevent for opening a
TTempTable) must be set to that of
the TTable referenced by the

BorrowFrom property. The reason
for this is in the way in which a
TTable’s IndexDefs are built, relying
on a call to DbiOpenIndexList
(which uses a table name) rather
than DbiGetIndexDescs (which uses
a cursor handle) which makes life
easier for the VCL development
team. However, because the
temporary table’s structure is
borrowed from the table named by
TableName, the indexes will be
exactly the same and so TTemp-
Table.IndexName can be used to
switch indexes. Great! However,
there’s another, more serious,
problem which severely limits the

FLDDesc = record
 iFldNum : Word; { Field number (1..n) }
 szName : DBINAME; { Field name }
 iFldType : Word; { Field type }
 iSubType : Word; { Field subtype (if applicable) }
 iUnits1 : Integer; { Number of Chars, digits etc }
 iUnits2 : Integer; { Decimal places etc. }
 iOffset : Word; { Offset in the record (computed) }
 iLen : Word; { Length in bytes (computed) }
 iNullOffset : Word; { For Null bits (computed) }
 efldvVchk : FLDVchk; { Field Has vcheck (computed) }
 efldrRights : FLDRights; { Field Rights (computed) }
end;

➤ Listing 8

procedure CreateInMemTable(Value: TDatabase);
var fd: array [0..1] of FLDDesc;
 c: HDbiCur;
begin
 FillChar(fd, 2*sizeof(FLDDesc), 0);
 fd[0].iFldNum := 1;
 StrPCopy(fd[0].szName, ’FieldOne’);
 fd[0].iFldType:= fldZSTRING;
 fd[0].iSubType:= 0;
 fd[0].iUnits1 := 5;
 fd[0].iUnits2 := 0;
 fd[1].iFldNum := 2;
 StrPCopy(fd[1].szName, ’FieldTwo’);
 fd[1].iFldType:= fldZSTRING;
 fd[1].iSubType:= 0;
 fd[1].iUnits1 := 5;
 fd[1].iUnits2 := 0;
 Check(DbiCreateInMemTable(Value.Handle, ’ATABLE’, 2, @fd, c));
 MyGenTable.Handle := c;
 MyGenTable.Open; {opens an instance of TGenTable}
end;

➤ Listing 9

function TInMemTable.CreateHandle: HDbiCur;
var PFieldDescs: Pointer;
 Props: CURProps;
 szTableName: DBITBLNAME;
begin
 Result := nil;
 PFieldDescs := nil;
 CheckIsBorrowFromActive;
 StrPCopy(szTableName, ’INMEMORYTABLE’);
 Check(DbiGetCursorProps(FBorrowFrom.Handle, Props));
 try
 PFieldDescs := AllocMem(Props.iFields * sizeof(FLDDesc));
 Check(DbiGetFieldDescs(FBorrowFrom.Handle, PFieldDescs));
 Check(DbiCreateInMemTable(Database.Handle, szTableName,
 Props.iFields, PFieldDescs, Result));
 finally
 if Assigned(PFieldDescs) then
 FreeMem(PFieldDescs, Props.iFields * sizeof(FLDDesc));
 end;
end;

➤ Listing 10

November 1996 The Delphi Magazine 23

usefulness of TTempTable: you can’t
modify its records. The culprit is
this code from TDataset.Inter-
nalOpen:

DbiGetCursorProps(
 FHandle, CursorProps);
FRecordSize :=
 CursorProps.iRecBufSize;
FBookmarkSize :=
 CursorProps.iBookmarkSize;
FCanModify :=
 (CursorProps.eOpenMode =
 dbiReadWrite) and not
 CursorProps.bTempTable;

The reason for this lies in the de-
sign of the database VCL. Non-live
query results are returned in tem-
porary tables and as we well know
such query results are read-only,
hence the above assignment to
FCanModify. Of course there’s noth-
ing to prevent you from altering the
offending code in DB.PAS to make
TTempTable read/write via the VCL
(except that’s it’s a bit naughty and
breaks the rules of OOP) and per-
haps in future versions of the VCL,
Borland will do just that (please?).

If you’re an OOP purist and don’t
wish to alter DB.PAS you can al-
ways modify the table using IDAPI
functions. DbiDeleteRecord does
what it says and is easy to use, but
adding records and modifying
fields is a little trickier.

Another difference between in-
memory and temporary tables is
that the latter can be made perma-
nent instead of being destroyed
when closed. The DbiMakePermanent
function achieves this:

function DbiMakePermanent(
 { Cursor handle }
 hCursor : hDBICur;
 { Rename temporary table }
 pszName : PChar;
 { Overwrite existing file }
 bOverWrite : Bool
): DBIResult;

The first argument, hCursor, must
be a handle to a temporary table, it
won’t work with an in-memory ta-
ble. pszName is the name of the
newly committed table and bOver-
Write specifies whether an existing
table of the same name is overwrit-

ten. After calling this function the
table is made permanent but isn’t
immediately committed to disk,
but a call to DbiSaveChanges solves
that. In fact a temporary table can
be made permanent and commit-
ted to disk with just a call to DbiS-
aveChanges but you cannot specify
the permanent table’s name using
just this function.

Local query results can be made
permanent with the function calls:

Check(DbiMakePermanent(
 Query1.Handle, ’QUERY1.DB’,
 True));
Check(DbiSaveChanges(
 Query1.Handle));

If you examine a TQuery’s cursor
properties you’ll find that the cur-
sor is in fact a temporary table; it
may interest you to examine a
query result cursor’s properties
before and after a call to Dbi-
MakePermanent or DbiSaveChanges.
All in all, temporary tables are very
useful, particularly for processing
or modifying query results (batch
moved from a TQuery) or as inter-
mediate tables used as part of
some larger processing task.

Conclusion
In this series of articles we’ve cov-
ered much about the BDE that is
useful to the Delphi developer
needing to extend the VCL’s data-
base access capabilities. As you
can see, the BDE provides much
more functionality than is used by
Delphi’s data-access components
and hopefully I’ve whetted your ap-
petite to dig deeper into IDAPI, par-
ticularly in future versions of the
product which will only get better
and better. Note that an updated
IDAPI help file for Delphi 1.02 (file
BDEHELP.ZIP) can be downloaded
from Compuserve and Borland’s
web site at www.borland.com.

John O’Connell is a freelance
software consultant and devel-
oper specialising in Delphi and
database application develop-
ment. He can be reached via email
on 73064.74@compuserve.com
Copyright 1996 John O’Connell.
All rights reserved.

CRTblDesc = record
 szTblName : DBITBLNAME; { TableName incl. optional path & ext }
 szTblType : DBINAME; { Driver type (optional) }
 szErrTblName : DBIPATH; { Error Table name (optional) }
 szUserName : DBINAME; { User name (if applicable) }
 szPassword : DBINAME; { Password (optional) }
 bProtected : Bool; { Master password supplied in szPassword }
 bPack : Bool; { Pack table (restructure only) }
 iFldCount : Word; { Number of field defs supplied }
 pecrFldOp : pCROpType; { Array of field ops }
 pfldDesc : pFLDDesc; { Array of field descriptors }
 iIdxCount : Word; { Number of index defs supplied }
 pecrIdxOp : pCROpType; { Array of index ops }
 pidxDesc : PIDXDesc; { Array of index descriptors }
 iSecRecCount : Word; { Number of security defs supplied }
 pecrSecOp : pCROpType; { Array of security ops }
 psecDesc : pSECDesc; { Array of security descriptors }
 iValChkCount : Word; { Number of val checks }
 pecrValChkOp : pCROpType; { Array of val check ops }
 pvchkDesc : pVCHKDesc; { Array of val check descs }
 iRintCount : Word; { Number of ref int specs }
 pecrRintOp : pCROpType; { Array of ref int ops }
 printDesc : pRINTDesc; { Array of ref int specs }
 iOptParams : Word; { Number of optional parameters }
 pfldOptParams : pFLDDesc; { Array of field descriptors }
 pOptData : Pointer; { Optional parameters }
end;

➤ Listing 11

FillChar(TblDesc, sizeof(CRTblDesc), 0);
with TblDesc do begin
 StrCopy(szTblName, szTableName);
 StrCopy(szTblType, Props.szTableType);
 iFldCount := Props.iFields;
 pfldDesc := PFieldDescs;
 iIdxCount := Props.iIndexes;
 pidxDesc := PIndexDescs;
end;
Check(DbiCreateTempTable(Database.Handle, TblDesc, Result));
Check(DbiSetProp(HDBIObj(Result), curXLTMODE, LongInt(xltFIELD)));

➤ Listing 12

24 The Delphi Magazine Issue 15

	Lock Me Up Before You Go-Go...
	In-Memory Of...
	Mind Your Language
	The DbiOpen... Functions
	Temporary Tables
	Conclusion

